Concept of effective mass and hidden mass for calculation of mobility of organic anions and peptides

Mieczystaw Wroński
Department of Chemical Technology and Environmental Protection, University of Lódź, Pomorska 18, Lódź (Poland)

(First received October 19th, 1992; revised manuscript received August 27th, 1993)

Abstract

The concept presented for the calculation of electrophoretic mobility is based on three assumptions: (1) the molecular mass M can be treated as composed of effective mass E and hidden mass $H, M=E+H$; (2) the mobility u is proportional to the charge Z and inversely proportional to the effective mass to the power $2 / 3$; and (3) both E and H are additive functions of composition. Butyric acid was chosen as a standard fulfiling the condition $M=E, H=0$, resulting in the equation $u=668 Z E^{-2 / 3} \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ V^{-1}. The suggested approach involves the summation of all special contributions to the hidden mass and calculation of the mobility from the effective mass $E=M-\Sigma H$. The total hidden mass involves values dependent on hydrocarbon structure, H_{α}, dependent on functional groups, H_{β}, and contributions of certain subunits such as amino acids in peptides, H_{r}. The H_{α} contributions for aliphatic compounds can be expressed as a function of the methylene (together with CH_{3} and CH but with the exception of CHOH chains) group content in the molecule. H_{α} for aromatic compounds depends on the nature of the aromatic ring. The special contributions were derived from the mobilities of about 200 compounds. Mobilities calculated by the suggested approach indicate an average relative error of $\pm 1.5 \%$ for organic acids and $\pm 0.8 \%$ for peptides.

INTRODUCTION

A knowledge of the relationship between ionic mobility, molecular mass and molecular structure is of prime importance for electrophoretic separation, determination and identification. It has been established experimentally that the electrophoretic mobility u is proportional to the charge Z and inversely proportional to the molecular mass M to the power - b :
$u=a Z M^{-b}$
where a and b are constants. Jokl [1] and Blasius and Preetz [2], using paper electrophoresis, found $b=1 / 2$, whereas Offord [3], on basis of an extensive study of peptides determined, $b=2 / 3$. The electrophoresis of mercapto acids in cellulose gel [4] resulted in $b=1 / 2$, while the mobilities extrapolated to zero concentration of cellulose gel [5] are best represented by $b=2 / 3$. The mobilities measured by means of paper or
gel electrophoresis are influenced by adsorption and sieving effects, whereas capillary isotachophoresis offers the results without additional disturbances [6,7].

THEORETICAL

It has been assumed that the molecular mass M can be considered as being composed of two parts, an effective mass E and a hidden mass H, $M=E+H$, and that the mobility u is proportional to the effective mass to the power $-2 / 3$ and to the charge Z
$u=k Z E^{-2 / 3}$
where k is a constant. By introducing butyric acid as a standard fulfilling the condition $M=E$, $H=0$, with $M=88.11$ and $u=33.7 \cdot 10^{-5} \mathrm{~cm}^{2}$ $\mathrm{s}^{-1} \mathrm{~V}^{-1}$ and charge $Z=1$ (in the calculation M of acids and a positive charge are used), the constant k will be given by $k=33.7 \cdot 88 \cdot 11^{2 / 3}=$
$668 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}$. The mobility will be then expressed by

$$
\begin{align*}
u & =668 Z E^{-2 / 3} \\
& =668 Z(M-H)^{-2 / 3} \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1} \tag{2}
\end{align*}
$$

where Z is relative charge. The effective mass is defined by the expression
$E=\left(668 Z u^{-1}\right)^{1.5}$
When two identical ions combine to form a new one, then in accord with the rule of additivity $M_{2}=2 M_{1}, E_{2}=2 E_{1}$ and $H_{2}=H_{1}$, and as follows from eqn. 2, the ratio of mobilities will be given by
$u_{2} u_{1}^{-1}=Z_{2} Z_{1}^{-1} \cdot 2^{-2 / 3}$
When ionization remains unchanged, $Z_{2}=2 Z_{1}$, and $u_{2} u_{1}^{-1}=1.26$. In the case of an exchange of subunits, $M_{1,2}+M_{3,4}=M_{1,3}+M_{2,4}$, the additivity of effective masses and hidden masses will be expressed by
$E_{1,2}+E_{3,4}=E_{1.3}+E_{2,4}$
$H_{1,2}+H_{3,4}=H_{2,4}+H_{12,3}$

EXPERIMENTAL

Most of the mobilities considered were taken from papers by Hirokawa and co-workers [813]. The others, involving mercapto acids, disulphides, sulphonic acids and N -acetyl derivatives of amino acids, were calculated from relative step heights, determined in this laboratory, using the equation [7]
$u=\frac{u_{\mathrm{s}} u_{\mathrm{L}}}{u_{\mathrm{s}}+h\left(u_{\mathrm{L}}-u_{\mathrm{s}}\right)}$
where u_{s} is the mobility of the standard ion, perchlorate $=66.7 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}$ or trichloroacetate $=36.2 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}$, and u_{L} is the mobility of the leading ion, chloride $=$ $79.0 \cdot 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}$.

Measurements of relative step heights were performed using an isotachophoretic analyser produced by Labeco (Slovakia), retaining a concentration of leading chloride ion of 0.01 M . Sulphonic acids were examined at pH 3.5 and mercapto acids and N -acetylamino acids at pH
6.0 , using β-alanine and histidine buffers. The terminating electrolytes used were either isocapronic acid or 2 -(N -morpholino)ethanesulphonic acid (MES) or sodium tetraphenylborate.

RESULTS AND DISCUSSION

The results of the measurements and calculations are presented in Tables I-VI and Fig. 1. The mobility always corresponds to full ionization of carboxylic or sulphonic groups. The hidden mass can be in general expressed as the sum $H=H_{\alpha}+H_{\beta}$, where H_{α} depends on the basic hydrocarbon structure and H_{β} is the contribution of the functional group. The relationship between hidden mass $H_{\alpha}=M-E-H_{\beta}$ and the number of methylene groups $\left(\mathrm{CH}_{3}\right.$ and CH groups are included, with the exception of CHOH chains) in the molecule is demonstrated in Fig. 1 and Table I. The established relationship can be expressed by the following equations:

Aliphatic carboxylic acids in methanol:

$$
\begin{equation*}
H_{\alpha}=12(n-1) n \geqslant 1 \tag{6}
\end{equation*}
$$

Fig. 1. Relationship between hidden mass, $H_{\alpha}=M-E M-$ H_{β}, and the number of the methylene groups in a molecule. (1) (Scale a): $=$ carboxylic acids in methanol, $H_{\beta}=0$; full line, $H_{\alpha}=12(n-1)$. (2) (Scale b): $\Delta=$ carboxylic acids in water, $H_{\beta}=0$; full line, $H_{\alpha}=6(n-3)$. (3) (scale b): $O=$ divalent carboxylic acids in water, $H_{\beta}=14$; full line, $H_{a}=4$ $(n-3)$. (4) (scale b): $\times=$ sulphonic acids in water, $H_{\beta}=48$; full line, $H_{\alpha}=3.5(n-3)$.

TABLE I
MOBILITIES, $u\left(10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}\right)$, OF CARBOXYLIC AND SULPHONIC ACIDS, MOLECULAR MASSES, M, EFFECTIVE MASSES, E, AND HIDDEN MASSES, H

No.	Acid	u	M	E	H
1	Acetic	42.4	60	62	-2
2	Propionic	36.9	74	77	-3
3	Butyric	33.7	88	88	0
4	Valeric	31.6	102	97	5
5	Hexanoic	30.2	116	104	12
6	Heptanoic	28.4	130	114	16
7	Octanoic	27.4	144	120	24
8	Nonanoic	26.7	158	125	33
9	Oxalic	74.6	90	76	14
10	Malonic	66.0	104	91	13
11	Succinic	60.3	118	104	14
12	Glutaric	55.6	132	118	14
13	Adipic	52.4	146	129	17
14	Pimelic	49.9	160	138	22
15	Suberic	47.2	174	150	24
16	Azelaic	45.9	188	157	31
17	Sebacic	44.9	202	162	40
18	Methanesulphonic	50.5	96	48	48
19	Ethanesulphonic	42.7	110	62	48
20	Propanesulphonic	37.5	124	75	49
21	Butanesulphonic	33.9	138	87	51
22	Pentanesulphonic	31.4	152	98	54
23	Hexanesulphonic	29.4	166	108	58
24	Octanesulphonic	26.2	194	129	65
25	Nonanesulphonic	25.1	208	137	71
26	Dodecanesulphonic	22.3	250	164	86
In methanol as solvent					
27	Acetic	43.8	60	60	0
28	Propionic	43.4	74	60	14
29	Butyric	41.6	88	64	22
30	Valeric	40.8	102	66	36
31	Hexanoic	39.6	116	69	47
32	Nonanoic	37.1	158	76	82
33	Decanoic	38.4	172	73	99
34	Palmitic	32.6	256	93	163

Aliphatic carboxylic acids in water:
$H_{\alpha}=6(n-3) n \geqslant 3$
Divalent aliphatic carboxylic acids in water:

$$
\begin{equation*}
H_{\alpha}=4(n-3) n \geqslant 3 \tag{8}
\end{equation*}
$$

Aliphatic sulphonic acids in water:
$H_{\alpha}=3.5(n-3) n \geqslant 3$
In order to explain the above relationships, the formation of a loop containing at lease four
methylene groups was assumed, resulting in a decrease in the outward surface of the molecule. The change in H_{α} per methylene group is, up to a certain n in water, constant for a given group of acids and differences between the groups of acids may be explained by the different compactness of the loops.

As can be derived from Table I and Fig. 1 from $n=7$ for carboxylic acids in water and from $n=8$ for sulphonic acids in water there is an additional increase in hidden mass, indicating the

TABLE II
MOBILITIES, $u\left(10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}\right)$, OF MERCAPTO ACIDS AND DISULPHIDES, EFFECTIVE MASSES, E, HIDDEN MASSES, H, AND RATIOS OF MOBILITIES

| No. | Mercapto acid | Thiol | | | Disulphide | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | u_{1} | E | | | |

additional decrease in the outward surface. This phenomenon can be explained by association or micellization in water. No loops and no association are found in methanol as solvent.

The results for thiols and disulphides are summarized in Table II. The contribution of a mercapto group to the hidden mass can be found directly from results Nos. 1-3 as 25, 27 and 25, and indirectly by subtraction of the value of 48 (H_{β} of sulphonic group) from result No. 10, $73-48=25$. Assuming the hidden mass for the $\mathrm{NH}-\mathrm{CO}$ group to be 32 , as derived from peptides, the hidden mass for the SH group in N -(2-mercaptopropionyl)glycine will be $59-$ $32=27$. This contribution for the SH group in captopril can be found by subtracting the contributions of proline, 20, and NHCO: 78-20$32=26$.

The average ratio of mobilities of disulphides to thiols amounts to 1.25 , in good agreement with eqn. 4 for $Z_{2}=2 Z_{1}$.
Table III gives the special contribution to the hidden mass of the acid derived from the results in Tables I, II and IV. The values can be utilized for the calculation of mobility from composition using eqn. 2. The sum of the special contributions is subtracted from the molecular mass and the effective mass thus found is inserted in eqn. 2.

The effective mass of fluorine and chlorine substituents in methanol as solvent is negative, which means that the substitution of hydrogen results in an increase in mobility. The contribu-

TABLE III
CONTRIBUTIONS OF FUNCTIONAL GROUPS TO HIDDEN MASS

Functional group	Hidden mass	
	Water	Methanol
Fluorine	18	22
Chlorine	30	38
Bromine	69	80
Iodine	120	126
Hydroxyl	14	19^{a}
Carbonyl	21	-
Nitro	38	-
Second aliphatic carboxylic	14^{b}	-
Sulphydryl Sulphonic	26	-
Amino, methoxy, ethoxy in benzene ring	48	57
Benzene ring in carboxylic or sulphonic acids	3	-
Benzene ring with alkyl substituents	36	-
Benzene ring in phenol Pyridine ring in nicotinic	25	56
acid	98	-
Naphthalene ring Methylene groups in monocarboxylic acids Methylene groups in divalent carboxylic acids Methylene groups in sulphonic acids	$4(n-3)$	61

[^0]TABLE IV
DETERMINED, u, AND CALCULATED, $u_{\text {calc }}$, MOBILITIES $\left(10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}\right)$, MOLECULAR MASSES, M, AND CONTRIBUTIONS OF FUNCTIONAL GROUPS TO HIDDEN MASS, $H_{\text {contr }}$

No.	Acid	u	M	$H_{\text {contr }}$	$u_{\text {calc }}$
1	Fluoroacetic	43.9	78	18	43.5
2	Trifluoroacetic	42.5	114	3×18	43.5
3	Chloroacetic	41.9	95	31	41.9
4	Dichloroacetic	39.4	129	2×31	40.4
5	Trichloroacetic	36.2	164	3×31	38.9
6	3-Chloropropionic	36.8	109	31	36.5
7	2-Chlorobutyric	32.8	123	31	32.8
8	5-Chlorovaleric	30.8	137	$31+6$	31.0
9	Bromoacetic	38.8	139	69	39.3
10	2-Bromopropionic	33.4	153	69	34.8
11	2-Bromobutyric	30.8	167	69	31.4
12	4-Bromobutyric	32.8	167	69	31.4
13	5-Bromovaleric	30.8	181	6+69	29.8
14	2,3-Dibromopropionic	32.3	232	2×69	32.3
15	Tribromoacetic	34.9	297	3×69	33.2
16	Iodoacetic	40.2	186	120	40.8
17	3-Iodopropionic	34.9	200	120	35.9
18	4-Iodobutyric	32.9	214	120	32.3
19	5-Iodovaleric	30.8	228	$6+120$	30.6
20	3,4-Dibromofluoroacetic	36.9	236	$2 \times 69+18$	35.9
21	Chlorodibromoacetic	34.9	252	$2 \times 69+31$	35.1
22	Glycolic	42.3	76	14	42.4
23	Lactic	36.5	90	14	37.2
24	2-Hydroxybutyric	34.2	104	14	34.2
25	Glyceric	36.3	106	2×14	36.5
26	Glucuronic	26.6	194	5×14	26.8
27	Gluconic	27.2	196	5×14	26.6
28	2-Chloro-3-hydroxybutyric	32.9	139	$31+14$	32.3
29	Glyoxalic	37.8	92	21	38.9
30	Pyruvic	40.4	88	21	40.4
31	Trichlorolactic	34.2	193	$3 \times 31+14$	34.2
32	Maleic	62.0	116	14	61.1
33	Fumaric	61.2	116	14	61.1
34	Tartaric	60.5	150	3×14	58.9
35	Citric	70.8	192	3×14	70.8
36	2-Ketoglutaric	59.0	146	$14+21$	57.8
37	Malic	59.0	134	2×14	59.6
38	Thiomalic	58.5	150	$14+26$	58.2
39	2,3-Dimercaptopropanesulphonic	34.4	188	$2 \times 26+48$	33.7
40	2-Hydroxyethanesulphonic	39.6	126	$14+48$	41.7
41	Cyclobutane-1,1-dicarboxylic	51.1	144	14	52.0
42	Cyclopentane-1,1-dicarboxylic	50.0	158	$14+4$	49.5
43	Cyclohexane-1,1-dicarboxylic	48.0	172	$2 \times 4+14$	47.2
44	Methylmalonic	58.5	118	14	60.3
45	Methylethylmalonic	50.0	146	14	51.5
46	Propylmalonic	52.0	146	14	51.5
47	Diethylmalonic	49.5	160	$4+14$	49.0
48	Ethylpropylmalonic	47.0	174	$2 \times 4+14$	47.0
49	Dipropylmalonic	46.0	188	$3 \times 4+14$	44.9
50	Oxaloacetic	56.0	132	14	55.4
51	3-Propylglutaric	47.0	174	$3 \times 4+14$	47.7
52	Benzoic	34.4	122	36	34.4
53	Benzenesulphonic	38.7	158	$36+48$	37.8
54	p-Toluenesulphonic	31.1	172	$25+48$	31.2
55	o-Aminobenzoic	31.6	136	$36+3$	31.6
56	Sulphanilic	33.7	173	$36+3+48$	34.2
57	p-Fluorobenzoic	33.4	140	$36+18$	34.2

TABLE IV (continued)

No.	Acid	u	M	$H_{\text {contr }}$	$u_{\text {calc }}$
58	p-Chlorobenzoic	33.4	157	$36+31$	33.2
59	m-Iodobenzoic	33.4	248	$36+120$	32.7
60	p-Bromobenzoic	31.5	201	$36+69$	31.8
61	p-Nitrobenzoic	32.1	167	$36+38$	32.5
62	3,5-Dinitrobenzoic	29.5	212	$2 \times 38+36$	31.0
63	p-Toluic	29.1	136	25	28.9
64	p-Ethylbenzoic	26.5	150	25	26.7
65	2,3-Dimethylbenzoic	27.1	150	25	26.7
66	o-Isopropylbenzoic	24.7	164	25	24.9
67	2,4,6-Trimethylbenzoic	24.7	164	25	24.9
68	p-tert.-Butylbenzoic	23.2	178	25	23.3
69	p-Hydroxybenzoic	34.0	138	$14+36$	33.7
70	Salicylic	35.4	138	$14+36$	33.7
71	2,4-Dihydroxybenzoic	32.0	154	$2 \times 14+36$	33.2
72	3,4-Dihydroxybenzoic	34.4	154	$2 \times 14+36$	33.2
73	Gallic	34.4	170	$3 \times 14+36$	32.7
74	p-Methoxybenzoic	28.3	152	$36+3$	28.5
75	p-Ethoxybenzoic	26.6	166	$36+3$	26.6
76	2-Nitro-3-bromobenzoic	28.2	246	$38+36+69$	30.4
77	2-Nitro-3-chlorobenzoic	31.3	201	$38+31+36$	31.8
78	Phenol	34.4	94	9	34.4
79	p-Nitrophenol	33.4	139	$9+38$	32.7
80	2,4-Dinitrophenol	31.3	184	$2 \times 38+9$	31.2
81	Picric	31.5	229	$3 \times 38+9$	29.8
82	p-Chlorophenol	33.4	129	$9+31$	33.5
83	2,4-Dichlorophenol	31.3	163	$2 \times 31+9$	32.7
84	Vanillic	27.1	168	$14+3+36$	28.2
85	Cinnamic	28.3	148	36	28.7
86	Phenylacetic	31.7	136	36	31.0
87	Phenoxyacetic	27.8	152	36	28.0
88	Nicotinic	34.6	123	38	34.6
89	2-Naphthalenesulphonic	31.3	208	$61+48$	31.3
In methanol as solvent					
90	Acrylic	43.5	72	12	43.5
91	methacrylic	42.8	86	24	42.6
92	Crotonic	41.7	86	24	42.6
93	2,4-Hexadienoic	40.2	112	48	41.7
94	Fluoroacetic	45.7	78	23	46.1
95	Trifluoroacetic	52.9	114	3×23	52.9
96	Chloroacetic	45.6	95	38	45.0
97	Dichloroacetic	47.1	129	2×38	47.3
98	Trichloroacetic	47.3	164	3×38	49.2
99	2-Chloropropionic	43.9	109	12+38	44.0
100	Bromoacetic	45.3	139		44.0
101	2-Bromopropionic	43.1	153	$12+80$	43.1
102	2,3-Dibromopropionic	41.1	246	$2 \times 80+24$	42.6
103	Iodoacetic	43.6	186	126	43.6
104	Glycolic	45.0	76	19	45.0
105	Lactic	43.8	90	$12+19$	44.0
106	2-Hydroxyisobutyric	43.2	104	$24+19$	43.2
107	3-Hydroxybutyric	41.4	104	$24+19$	43.2
108	Glyceric	41.0	106	2×19	40.0
109	Glucuronic	32.6	194	5×19	31.2
110	Benzoic	41.4	122	57	41.4
111	Salicylic	45.1	138	$24+57$	45.0
112	5-Bromosalicylic	44.4	218	$80+24+57$	45.0
113	m-Chlorobenzoic	41.3	157	$57+38$	42.6
114	Mandelic	40.2	152	$57+24$	38.9
115	Nicotinic	40.3	123	56	40.4

tion of the benzene ring may amount, depending on the substituents, to 36,25 or 9 . The hidden mass of phthalic acid is 39 , which can be calculated as $36+3$, taking a value of 3 for the second aromatic carboxylic group, or $25+14$, assuming the decrease in the hidden mass of the benzene ring to be 25 . It may be noted that the ratio 36:61 is in good agreement with the ratio 6:10 for the number of carbon atoms in benzene and naphthalene rings. The hidden mass of the pyridine ring is almost the same as that of benzene.

The results summarized in Table IV involve the contributions to the hidden mass of functional groups taken from Table III. The contributions of methylene groups are as follows: 6, Nos. 13 and $19, n=4 ; 4$, Nos. 42 and 47, $n=4$; 8 , Nos. 43 and 48, $n=5 ; 12$, Nos. 49 and 51, $n=6$. Obviously the methylene groups in cycloalkanes and in alkyl substituents should be taken into account.

The contributions of aliphatic hydroxyl groups are satisfactorily constant, but aromatic hydroxyl groups show some deviations, as can be seen from results Nos. 69-72. Possibly the dependence on the structure should be taken into account. The average relative error in the calculation of mobility from special contributions amounts to $\pm 1.6 \%$.

Table V demonstrates the hidden masses of some amino acids calculated from the mobilities of peptides ($H_{\mathrm{r}, \mathrm{pep}}$) summarized in Table VI by the following procedure. The mobility of glycine as determined by Hirokawa et al. [11] is $37.4 \cdot$ $10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}$. The calculated effective mass of 75.5 is in good agreement with the molecular mass $M=75.1$. It has been assumed that the hidden mass for free and combined glycine is zero. With this assumption, the contribution of the $\mathrm{NH}-\mathrm{CO}$ peptide bond can be derived from values listed in Table VI, Nos. $1-5$, as the ratio H / p, where $H=M-E$ and p is the number of peptide bonds. The results are $35,30,32,32,32$ and 31 , mean 32 . It is now possible to calculate step by step the contributions of amino acids in peptides, as follows: No. 6, Ala-Gly, $H_{\text {Ala }}=$ $35-32=3$; No. 16, Ala-Gly-Gly, $H_{\text {Ala }}=65-$ $64=1$, Ala-Ala, $H_{\text {Ala }}=0.5(37-32)$.

The second part of Table V (columns 4-7) contains the results concerning N -acetyl derivatives of amino acids. The hidden mass of N acetylglycine represents the $\mathrm{NH}-\mathrm{CO}$ bond in N -acetyl derivatives. The contributions of amino acids, $H_{\mathrm{r}, \mathrm{ac}}$, were calculated by subtraction of 29 from the values listed in the last column. The satisfactory agreement between $H_{\mathrm{r}, \text { pep }}$ and $H_{\mathrm{r}, \text { ac }}$ gives a strong support for the suggested calculations.

TABLE V

HIDDEN MASSES OF COMBINED AMINO ACIDS, H_{r}, DERIVED FROM MOBILITIES OF PEPTIDES, $H_{\mathrm{r}, \mathrm{pep}}$, AND FROM MOBILITIES OF N-ACETYLAMINO ACIDS, $H_{r, a c}$, MOBILITIES, $u\left(10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}\right)$, MOLECULAR MASSES, M, AND HIDDEN MASSES, H, OF N-ACETYLAMINO ACIDS

No.	Amino acid	$H_{\text {r,pep }}$	$H_{\text {r,ac }}$	\boldsymbol{u}	\boldsymbol{M}	\boldsymbol{H}
1	Gly	0	0	33.7	117	29
2	Ala	2	2	31.0	131	31
3	α-Amin	8	-	-	-	-
4	Val	13	13	27.9	159	42
5	Ser	15	-	-	-	-
6	Thr	16	-	-	-	49
7	Pro	16	20	29.5	157	49
8	Leu	20	19	26.7	173	48
9	Ileu	20	-	-	-	-
10	met	41	42	27.5	191	71
11	Asn	35	-	-	-	-
12	His	44	-	-	-	78
13	Phe	49	49	26.1	207	78
14	Trp	79	-	-	-	-
15	Tyr	88	-	-	-	-
16	Cys-SH	-	29	30.0	163	58

TABLE VI
DETERMINED, u, AND CALCULATED, $u_{\text {calc }}$, MOBILITIES OF PEPTIDES ($10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1} \mathrm{~V}^{-1}$), MOLECULAR MASSES, M, HIDDEN MASSES, H, AND CONTRIBUTIONS OF COMBINED AMINO ACIDS TO HIDDEN MASS, $H_{\text {conr }}$

No.	Peptide	u	M	H	$H_{\text {contr }}$	$u_{\text {calc }}$
1	Gly-Gly	31.5	132	35	32	31.0
2	(Gly) ${ }_{3}$	26.1	189	60	2×32	26.7
3	(Gly) ${ }_{4}$	23.6	246	96	3×32	23.6
4	(Gly) ${ }_{5}$	21.2	303	127	4×32	21.3
5	(Gly) ${ }_{6}$	19.3	360	157	5×32	19.5
6	Ala-Gly	28.8	146	35	$32+2$	28.7
7	Gly- α-Amin	27.2	160	39	$32+8$	27.4
8	Gly-Val	26.0	174	44	$32+13$	26.1
9	Gly-Ileu	25.2	188	52	$32+20$	25.2
10	Gly-Leu	25.1	188	51	$32+20$	25.2
11	Gly-Thr	26.3	176	48	$32+16$	26.3
12	Gly-Ser	28.1	162	46	$32+15$	28.2
13	Gly-Asn	27.5	189	70	$32+35$	27.1
14	Gly-Phe	24.8	222	83	$32+49$	25.0
15	Gly-Trp	23.6	261	111	$32+79$	23.6
16	Ala-Gly-Gly	25.0	203	65	$2 \times 32+2$	25.1
17	Gly-Gly-Ileu	21.9	245	77	$2 \times 32+20$	22.5
18	Gly-Gly-Phe	21.9	279	111	$2 \times 32+49$	22.3
19	Gly-His-Gly	22.5	269	108	$2 \times 32+44$	22.5
20	Gly-Gly-Val	22.6	231	71	$2 \times 32+13$	23.2
21	Ala-Ala	27.0	160	37	$32+2 \times 2$	26.8
22	Ala- α-Amin	25.8	174	43	$2 \times 32+2+8$	25.7
23	(Ala) ${ }_{3}$	22.2	231	64	$2 \times 32+3 \times 2$	22.5
24	Ala-Leu	23.9	202	55	$32+2+20$	23.8
25	Ala-Val	25.2	188	52	$32+2+13$	24.6
26	Ala-Ser	26.2	176	48	$32+2+15$	26.4
27	Ala-Asn	25.5	203	69	$32+2+35$	25.5
28	Ala-Met	24.2	220	75	$32+2+41$	24.2
29	Ala--Phe	23.9	236	89	$32+2+49$	23.6
30	Ala-Leu-Gly	21.3	259	84	$2 \times 32+2+20$	21.5
31	Gly-Leu-Ala	21.1	259	81	$2 \times 32+20+2$	21.5
32	Leu-Leu	21.6	244	72	$32+2 \times 20$	21.6
33	(Leu) ${ }_{3}$	17.6	357	124	$2 \times 32+3 \times 20$	17.6
34	Leu-Val	22.3	230	66	$32+20+13$	22.2
35	Leu-Phe	21.8	278	109	$32+20+49$	21.4
36	Gly-Leu-Try	21.0	251	172	$2 \times 32+20+88$	21.0
37	Gly-Pro-Ala	22.5	243	82	$2 \times 32+16+2$	22.5
38	Gly-Phe-Phe	19.7	369	172	$2 \times 32+2 \times 49$	19.4
39	Leu-Gly-Phe	19.3	335	132	$2 \times 32+20+49$	19.7
40	$(\mathrm{Ser})_{3}$	22.0	279	112	$2 \times 32+3 \times 15$	21.7

The hidden mass of a peptide can be calculated from the composition by means of the equation
$H=M-E=\sum_{r=1}^{m} r H_{\mathrm{r}}+32 p$
where r, H_{r} and m are the number (index) of a given amino acid, its hidden mass and number of
species in the molecule, respectively, e.g., for a peptide (Ala) ${ }_{3}(\mathrm{Gly})_{5}, r$ for $\mathrm{Ala}=3$, for Gly $=5$ and $m=2$. As can be derived from eqns. 2 and 10 , the mobility of a peptide can be calculated from the amino acid composition by the equation

$$
\begin{equation*}
u=Z \cdot 668\left(M-32 p-\sum_{r=1}^{m} r H_{\mathrm{r}}\right)^{-2 / 3} \tag{11}
\end{equation*}
$$

The average relative error of calculated mobilities of peptides listed in Table VI amounts to $\pm 0.8 \%$.

The additivity of hidden masses can be demonstrated for peptides by the following examples:

$$
\begin{aligned}
& \text { Ala-ALa }+ \text { Gly-Gly }=2 \text { Ala-Gly; } 37+35=72 \\
& \quad 35+35=70 ; \\
& \text { Ala-Leu }+ \text { Gly-Leu }=\text { Ala-Gly }+ \text { Leu }- \text { Leu } ; \\
& \quad 55+51=106,35+72=107 \\
& \text { Ala-Ala }+ \text { Gly-Ser }=\text { Ala-Gly }+ \text { Ala-Ser; } \\
& \quad 37+46=83,35+48=83
\end{aligned}
$$

CONCLUSIONS

The demonstrated approach may be utilized for the calculation of mobilities from the known compositions and contributions of functional groups. The mobilities of asymmetric compounds can be calculated from those of symmetrical compounds. The method seems to be applicable to the examination of peptides and detergents
and to follow the course of any change in the outward surface of a molecule.

REFERENCES

1 V. Jokl, J. Chromatogr., 13 (1964) 451.
2 E. Blasius and W. Preetz, Z. Anorg. Allg. Chem., 335 (1965) 16.

3 R.E. Offord, Nature, 211 (1966) 591.
4 M. Wroński, J. Chromatogr., 288 (1984) 206.
5 M. Wroński, J. Chromatogr., 469 (1989) 378.
6 F.M. Everaerts, J.L. Beckers and Th.P.E.M. Verheggen, Isotachophoresis -Theory, Instrumentation and Application, Elsevier, Amsterdam, 1976.
7 P. Boček, M. Deml, P. Gebauer and V. Dolnik, Analytical Isotachophoresis, VCH, Weinheim, 1988.
8 T. Hirokawa, M. Nishino, N. Aoki, Y. Koso, Y. Sawamoto, T. Yagi and J. Akiyama, J. Chromatogr., 271 (1983) D1.

9 T. Hirokawa, M. Nishino and Y. Kiso, J. Chromatogr., 252 (1982) 49.
10 T. Hirokawa, T. Tsuyoshi and Y. Kiso, J. Chromatogr., 408 (1987) 27.
11 T. Hirokawa, T. Gojo and Y. Kiso, J. Chromatogr., 369 (1986) 59.

12 T. Hirokawa, T. Gojo and Y. Kiso, J. Chromatogr., 390 (1987) 201.

13 T. Hirokawa, R. Sugino and Y. Kiso, J. Chromatogr., 585 (1991) 364.

[^0]: ${ }^{a}$ Aromatic OH 24.
 ${ }^{b}$ Second aromatic COOH 3.

